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Abstract. We study the heat kernel for an operator of Laplace type witHunction potential
concentrated on a closed surface. We derive the general form of the rsalmptotics and
explicitly calculate several first heat kernel coefficients.

1. Introduction

Singular potentials are a frequently used idealization of physical situations allowing for an
easier (and, sometimes, explicit) solution while keeping the essential features of the problem.
The best studied cases of singular potentials aresthenction potentials concentrated at
isolated points, which describe the contact interactions of particles (for a review, see [1]).
Rigorous analysis of such potentials was initiated by Berezin and Faddeev [2] and has since
developed in a mature mathematical discipline [1]. Additional cases of singular potentials also
include cosmic strings and other topological defects [3], and problems related to black hole
entropy [4]. We also wish to mention a recent work on the boundary discontinuities [5].

With respect to the Casimir effect,safunction shaped potential provides the simplest
generalization of the conductor boundary conditions moving towards the inclusion of more
realistic properties of the walls, such as partial transparency. For a scalar and a spinor field with
plane boundaries this problem has been investigated in [6], and for moving partly transmitting
mirrors in [7]. An interesting approach using ‘semihard’ and ‘weak’ boundaries is developed
in [8]. In all these cases it is crucial to know the ultraviolet divergences in order to find
the structure of the necessary counterterms. This is equivalent to the investigation of the
corresponding heat kernel asymptotics. As is known [9], this is an expansion with respect to
integer powers of the proper time parametésee below) for Laplace-type operators on closed
manifolds and to half-integer powers, i.e. to powers/ef on manifolds with boundaries and
Dirichlet or Robin boundary conditions. For more complicated pseudo-differential operators
powers of Ir may appear.

This paper is devoted to singularities which are located on closed hypersurfaces of
dimensionm — 1, wherem is the dimension of the underlying manifold. Apart from the
quantum mechanical problem of a particle in space with semitransparent boundaries (for a
recent calculation of the vacuum energy for such a system see, for example, [10]) possible
physical applications also include fermions on the background of a magnetic tube [11] and
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photons interacting with dielectric bodies [12,13]. In all these cases the dynamics is described
by a second-order differential operator of Laplace type, supplemented by certain matching
conditions on a surface. Our primary interest is in the heat kernel asymptotics. They govern
the short-time asymptotics of quantum mechanical propagators, the ultraviolet divergences
and the large-mass expansion in quantum field theory.

The heat kernel coefficients for singular potentials cannot be obtained, in general, as
limiting cases of smooth configurations. This is already clear from the fact that the heat kernel
expansion for a smooth potential contains powers of the potential taken at the same point. Such
expressions become ill-defined in th&unction limit. In the paper by Kirsten and the present
authors [13], the suprising property was observed that sometimes the ultraviolet behaviour of
a system witl$-function potential is less singular than that of corresponding ‘smooth’ system.

Let us proceed with basic definitions. L#&f be a smooth Riemannian manifold of
dimensionm. Let X be a smooth closed submanifold of co-dimension 1. L&k a vector
bundle overM. Let E andV be endomorphisms of andV|s, respectively. In a more
‘physical’ languageE andV are matrix valued functions bearing spin and internal indices.

In this paper we study the heat kernel expansion for the operator

D=—(V2+E(x)+685V(x)) = Dy — 85V (x). 1)

Let dx and dy be the Riemannian volume elementsirand. We normalize théy, function
in such a way that for any smooth functign

[ sxrede= [ s @)
We adopt the following short-hand notation for the integrals:
[ asrw =t [ dvro)=im) 3)

We can choose the coordinates in such a way that in the vicinigy thfe metric has the
form

g,-_,-dxi dx/ = (dx™)? + go; dx® dx?. (4)
The second fundamental form &fis L, = %amgab. We suppose that” = 0 onx. Our
notation is the same as in [14R;;; are the components of the Riemann curvature tensor.

With our sign conventionsR;,12is negative on the standard sphere in Euclidean space. The
Ricci tensorp and the scalar curvatureare given by
0ij ‘= Rikkj T = pii = Riki. 5)

Let p? = 0ijpij and R? = RijuRiju be the norm of the Ricci and full curvature tensors.
Let ©;; be the endomorphism-valued components of the curvature of the connectibrion
physical languageQ;; is the field strength for the Yang—Mills and spin connections. Let*;
denote multiple covariant differentiation with respect to the Levi-Civita connectiati,afnd
let:” denote multiple tangential covariant differentiation Brwith respect to the Levi-Civita
connection ofx; the difference between these two is measured by the second fundamental
form. For examplef;jj = f;mm + f;aa = f;mm + faa — Laaf;m-

A mathematically rigorous way to define the spectral problem for the opefaisrto
replace it by the spectral problem fbg for x ¢ ¥ supplemented by the conditions @n(see,
for example, [1]):

¢(—0) = ¢(+0) (6)
with the short-hand notatiopi(£0) = lim »_, 10 ¢ (x).
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The heat kernekK (x, y; 1) is a solution of the heat equation
(@ + Do)K (x,y;1) =0 (8)
with the initial condition
K(x,y;0) = 8(x,y) 9)

which satisfies the matching conditions Brfollowing from (6) and (7).
We are interested in the integrated heat kernel

K(f, D;t) = {f(x)K (x, x; )}[M] = Tr(f exp(—tD)). (10)
On manifolds with local boundary conditions there is an asymptotic expansior-as0
K(f.D:t) =) a,(f. D)i" ™/ (11)
n>0

where the coefficients, (f, D) are volume and surface integrals of local invariants. The
existence of the asymptotic expansion (11) is usually considered as granted. There are,
however, important exceptions (besides ‘genuine’ pseudo-differential operators, the square
root of the Laplacian, for instance), such as the boundary value problem for spectral boundary
conditions, ands-function potentials with point-like support on manifolds with dimension

m > 2. In such cases Interms can appear in the asymptotic expansion [15-17]. To the best
of our knowledge, the existence of expansion (11) for the problem considered here has never
been stated before.

This paper is organized as follows. In the next section we derive an integral equation
for the heat kernel and show the validity of the asymptotic expansion (11). In section 3 we
calculate the heat kernel asymptotics for the particular case &whisna sphere iR”. In
section 4 we derive explicit expressions for the heat kernel coefficigOys D), n < 5, for
the most general form of the operatbr To this end, we use the particular case calculations
of section 3 and functorial properties of the heat kernel.

2. General structure of the heat kernel

To study the general structure of the heat kernel expansion we use an integral equation similar
to that proposed by Gaveau and Schulman [18] for the one-dimensiquaéntial:

K(x,y;t) = Ko(x, y; 1) +/ ds/ dz Ko(x,z;t —s)V(2)K(z,y;s) (12)
0 >

whereKy(x, y; t) denotes the heat kernel corresponding to the opefaavith V = 0.
Equation (12) has a solution in the form of the power seridg:in

o0 t Sn 52
K(x,y;t) = Ko(x,y;t)+2f dsn/ ds,,_l.../ dslf dzn.../ dz1
—iJo 0 0 p) P

XK()()C, Zns t — Sn)v(zn)KO(Zn’ Zn—-1;Sn — Sn—l) .. V(Zl)KO(Zl, y; Sl)~ (13)

Equation (12) can be obtained formally as a limiting case of the smooth potential. Instead of
investigating this limiting procedure we prefer to directly check that the heat kernel defined
by (12) satisfies the heat equation (8) with the initial condition (9) and boundary conditions
which follow from (6) and (7). The initial condition (9) is evident from the equation (13).
Only the first term contributes at= 0 if x, y ¢ X. The heat equation (8) can be checked by

a direct calculation. The first of the matching conditions (6) merely expresses the fact that the
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heat kernelKy(x, y; t) is smooth enough. The second condition (7) is a bit less trivial. Let
y ¢ ¥. Then the following sequence of transformations holds:

Vi K (=0, y; 1) — V3 K(+0, y; 1)

€ 1
= —lim / dx™ Vﬁ/ ds/ dz Ko(x,z;t —s)V(2)K (2, y; 5)
—€ 0 z

e—0

e—0

t
= Iim/ dx™ DS/ ds/ dz Ko(x,z;t —s)V(2)K(z, y; 8)
—€ 0 =

— lim / dx’”/ ds/ dz (3, Ko(x, : 1 — )V @K (2, v 8)
—€ 0 z

e—0

€ t
= Iim/ dx'"/ ds/ dz Ko(x, z;t — s)V(2) Dy K (z, y; 5)
—€ 0 z

e—0

+Iim/ dx’”/ dz [8(x, 2)V(x)K(z, y; 1) — Ko(x, 2; )V (2)8(z, )]
—€ z

e—0

=V’ 0K ((x,0), y;1).

The main advantage of representation (13) is that the sntshaviour ofK (x, y; 1)
is defined through the smallbehaviour ofKo(x, y; t) which is known in some detail. To
simplify notation we do not explicitly write down the volume elements here, or the parallel
transport matrices later on. We also drop all matrix indices.

We are interested in the integrated heat kefnél) = [ dx K (x, x; 1), where we put the
smearing functiory = 1 for simplicity. The integration over can be performed by using the
equation

f dx Ko(x, y1; 11)Ko(y2, x; 72) = Ko(y1, y2; 71 + 72) (14)
M

which follows from the evident operator identity @Pe "o = g=(m*m2Do We have

o t Sn 52
K(t) =K0(t)+Z/ ds,,/ ds,,,l.../ dslf dz,,.../ dzy
=1 J0 0 0 b o

XKO(ZI» Znyt 51— Sn)V(Zn)KO(Zns Zn—-15Sn — Snfl) cee V(Zl)~ (15)

It is instructive to explicitly calculate several of the first terms of expansion (15). In the
linear order inV, one immediately gets

Kty =1 / dz Ko(z, 22 )V (2), (16)
)}

This equation means that the liner ordeMrcan be obtained from the asymptotic expansion
for the heat kernel in which a smooth potential is replaced by the singular one. Such a simple
relation does not hold at higher ordersiin

In analysing the ordel? contributions we suppose tha, is just the standard scalar
Laplacian inR™, neglect derivatives oV and suppose tha is flat. However, we turn to
a slightly more general case and all@vto be of dimensiom: — k. In this particular case
Ko(x, y; 1) = (4rt)~"/? exp(—(x — y)?/4t) and

m

Ko(t) = (47)~ "2 1" / dz V(z)2/ dsZ/'stl ((t — 59+ 51)(s2+51)) 2. (17)
z 0 0

For k > 1 the integrals oves are divergent. This shows that the proposed method cannot
be extended, particularly fé(r) potentials inR” with m > 2, for which expansion (11) is
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known to break down [16,17]. We now return to the subject of our stuely,1. All integrals
are easily calculated giving

t 1
Kalt) = Gt [ 4 V@7 (18)

where we have omitted all higher-order terms.
To calculate the other terms in expansion (15) one can use the following strategy. Let us
substitute the small-asymptotic expansion for th€y(x, y; s)

exp(—o (x, y)/2s)
(4 s)mla

Ko(x, y; 8) ~ AP x, y) +5sAD (x, y) +--2) (19)

whereo (x, y) is the half square of the geodesic distance betweand y; A;?) (x, y) are the

heat kernel coefficients for the operaidg. Contributions to (15) of largely separated points
are exponentially damped. Therefore, we may exp&fidz;, z;_1) ando (z;, z;_1) in Taylor
series in(z; — zj—1). The potentiald/(z;) are to be expanded around a certain point,zsay
Finally, the expression given under the integrals in (15) will become a sum of the monomials

( (21— 20)? (z2 — 11)2) LT AU zn)™" (z2 — z)™

At —sits) A(sy — 51) (t — sy +s)M 7 (53— s7) Mo
(20)

where I'V) is a local invariant functional of/, geometric invariants and their derivatives
calculated at the point;. Negative powers ofs; — s;_1) appear due to the expansion of the
o(z; — zj—1) In the exponentials. Itis easy to see that < N;/2.

Integrals over;, except for the last one ovei, can be calculated with the help of the
relation

G1—x)?  (x—y)?\ _ [(4map\? (1 — 2
. exp(_ e 4p ) - (cx+ﬂ> exp(‘ 4+ B) ) @D

with positive real parameters and 8. Note that equation (21) is just a particular case of
(14) whenDy is the flat space Laplacian. Integrals of even powers ef y;) with the same
exponential weight are obtained by differentiation of (21) with respegt t0dd powers ok

can be integrated by using the following obvious relation:

/ dx (xa _ ﬂy]{f +Olyg) eXp(— (yl _X)Z _ ()C - y2)2> -0 (22)
I a+p 4o 48

Rn

Before integrating oves; let us introduce rescaled variablgs = s;/¢. This enables us

to extract an overall power of the proper timeIntegrals oves; will only give numerical
factors. One can easily see that the strongest possible singularity of the integrand has the form
((1—5,+51)...(5,— 51))*%. This singularity is integrable. Hence the integral aieslways

exists. After all the integrations have been performed one obtgimi, /™) (V, ...; z1)
multiplied by a numerical coefficient and a powergf.

Generalization of the procedure proposed in this section for the case of the non-unit
smearing functiory is obvious. Therefore, we have demonstrated that for the spectral problem
considered in this paper the asymptotic expansion (11) is valid where the coeffigieHt®)
are integrals oved andX of local invariants. Volume terms are the same as in the heat kernel
expansion for the operata@y,.
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3. Penetrable spherical shell

Before calculating the heat kernel expansion for the generic form of the opé&ratansider
a particular case of the constant potentialith the support on a spherical shell of the radius
R:

V(x)dy = —%S(r _R). (23)

Herer is the radial coordinate. Lddg in (1) be the standard scalar Laplaciariifi. After
separating the angular variables the eigenvalue equation takes the form

2 _ —
( T oo Wdrm 2)>¢=k2¢ (24)

ar? r  or r

wherel = 0,1, 2, ... is the orbital momentum. After the substitutigrir) = r@"/2y(r)
the equation takes the form

2 2
(_ 9 13 + U_> v = k%Y (25)

oar2  ror r2

where the notatiom =/ + ’"T*Z is introduced.
The basic ideas of the formalism used in this section are contained in [19]. The zeta
function associated with this operator can be written in the form

< dr r*
co = [ T KO (26)

wherek (¢) is the integrated heat kernel. The functio@)¢ (s) has simple poles in= %’ —N
(N =0, % 2, ...)whoseresidua are determined by expansion (11) of the heat kernebfd.
It can be easily seen that the coefficients are related to the residua by means of

anp = Re%:% ()¢ (s). (27)

These heat kernel coefficients can be obtained by calculating the zeta function starting from
the differential equation (25). The zeta function of the operBtoan be expressed in the form

_sinzs & o0 25 0 ,
(o) = — ;D,/o dick™2 - In fi(ik) (28)

where f; (k) is the Jost function of the scattering problem corresponding to the opératod
@2 +m—-2)(+m—3)!
- Il (m —2)!
is the multiplicity of the orbital eigenvalues. This representation, as it stands, is valid for
Res > 7. The Jost function reads [13]
filik) = L+al, (K, (k). (30)

In equation (28) the contribution resulting from the empty space (it is independentdren
dropped. Due to this reason there is no contribution corresponding to the coefiictbate.

In fact, we need the residua of the functib(s) (s). These are delivered when inserting
the uniform asymptotic expansion fé&r — oo and!/ — oo of the Jost function into
equation (28). The latter can be obtained simply by inserting the known expansions of the
Bessel functions into (30). This expansion can be written in the form

In fi(ik) = > X, it'v™". (31)

m>3 (29)

1
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Here,n = 1, ..., N, andN,, is the number of the highest heat kernel coefficient requiring
calculation. The coefficient¥, ; are numbers, some of the first appearing in (31) are given
in the appendix. The notation= /1 + (k/v)? is used. When inserting (31) into the rhs
of equation (28), the change of variables—> vk can be made after which the expression
factorizes. The integral can be calculated easily. It reads

% d  TA=9T(+i/2)
fo dkk ™2 t! = N7 : (32)

The sum ovef takes the form
o0
td.n) = D 2" (33)
=0

The functiong (d, n) can be expressed in terms of Riemann and Hurwitz zeta functions. They
are shown in the appendix.
Now the heat kernel coefficients can be expressed in the form

N .
ay = —Res_cx > . n)ZXn,ir(er'/z) (N =1,
n=1 i

r/2) 2

NIw
Nilol

e N, (34)

The sum ovei runs fromi = ntoi =n + 4([”—;1] — 1) where [..] denotes the integer part.
In this form they can be calculated immediately using one of the standard computer systems
for analytical calculations. As a result, we obtain that= 0 in any dimension. Fan = 3

other coefficients read:
2

_ —o _ o
ay = 77?3 az = §4
as = 1235 as = g—4 (35)
— (@34 + 210?)) (1 + 2%
TV = "1536
form = 4:
_—«a . a’mT
“T%, ®T a2 ,
w=2 e (@ (31023 Nl (36)
—(a3(—8 + 70?)) —(@?(135 + 1682 — 128&%) /)
a6 = 3360 ar= 3932 16
form =5:
— 052
ap = W? a3z = 4—§ )
v A @)
—(3(—24 + Tu?)) — Q0% + 205
as = ar= ——————
50407 9216
form = 6:
_ v
2= 64 4= 2562(15 s
o o — T
ag = —@ ds = _T (38)
_ —(@3(=20+%?)  0%(945— 116Qx2 + 128*) /7
de = 11520 = 3145728
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and form = 7:
—o 052
ar» = ——— an = ——
27 12007 ®~ 480
—at @?(—6 +a?)
_ _yttorer) 39
“= om0 " 3840 (39)
_ —(a3(=76 + T?)) _ a?(27 — 1502 + o)
9= T 50400/7 = 46080

4. Calculation of the heat kernel asymptotics

The information on the general structure of the heat kernel asymptotic obtained in section 2
can be summarized in the following lemma.

Lemma 1.

(1) LetNY(f) = f.m..m be thevth normal covariant derivative. There exist invariant local
formulaea, ,(y, D) so that

0.0 =lan(f. DM+ Y W D131, (40)

ovn—1

(2) Ifwe expand,_ , with respectto a Weyl basis, the coefficients only depend on the dimension
m through a normalizing constant.

(3) Consider a transformation which changes the sign beforenttte components of all
vector and tensor fields and reverses the sign of the extrinsic curvatyreUnder this
transformatiory,, , — (—=1)"a,.,.

(4) In the linear order ofV

8
an(f. D) = {V(z)%an(f, Do)}[X]. (41)

Proof. Assertion (1) is now evident. Volume terms, (f, Do; x)}[M] are given in the
appendix B. One can also observe that coefficients before monomials constructed from the
geometric invariants depend on the dimensioonly through the factot4xr)~"/2. A more

simple way to prove assertion (2) is to consider the product spétes S' x M; and

¥ = 5! x !, exactly repeating the corresponding proof for manifolds with boundaries [20].
Assertion (3) follows from the fact that we can repeat all the calculations in section 2 with
the replacement”™ — —x™. The last assertion of lemma 1 is just a trivial generalization

of equation (16) for non-unit smearing functigh Indeed, it is sufficient to represent the
variation on the rhs of (41) as

t
Ko() =/ dx/ ds f(x)Ko(z, x;t — s)Ko(x, z; 5). (42)
SE(2) M 0
Assertion (4) is now evident.
Now we can determine several first heat kernel coefficients up to a few, as yet undetermined,
constants. O
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Lemma 2. There exist universal constantgs, . . ., ¢s 10, Such that
ao(f, D) = ao(f, Do)
ai(f,D)=0

ax(f, D) = ax(f, Do) + (4)"/?{ fV}[Z]

as(f. D) = (4m)" " D2{c3 1 f V3]

as(f, D) = as(f. Do) + (4m) " *{car fV3+ 2 fTV + fEV (43)
+%fviaa - %f;mVLaa + %f;mmv}[z]

as(f, D) = (4m)~ " P2 {eg 1 fVA + 52 f TV + C530mm V?
+c5.4fV2E +c55fVZLaaLiy + c56f V?LapLap + c57f ViaaV
+cs8f ViaVia + €58 fn VZLaa + €510 fomm V2 Z].

Proof. According to lemma 1 (1) and (2), any coefficientcontains all local invariants of
appropriate dimension. Some of the invariants, such as, WL, f..»V etc, are ruled out
by lemma 1 (3). All terms linear iV are determined by lemma 1 (4). |

ol

1 1 1 1 1
Lemma3. c31 = 5,41 =5, (51 = g3, (54 = 5, (55 = — 55 (56 = 725"

Proof. The coefficients:z 1, ca1, 5.1, c55 andces g are easily calculated using the example
of the § potential on the sphere of the previous section. To calculate the coeffigignt
consider the case wheli = el is a constant proportional to the unit matrix. In this case
K(f;t) = K(f;t)|g=o0eXxp(te). This immediately givess 4 = c31 = %. O

Several more universal constants can be calculated by a reduction to Dirichlet and
Neumann boundary value problems. All necessary definitions and explicit expressions for
the heat kernel coefficient for that problem can be found in appendix B.

Lemma4. (1) LetM = ¥ x [—a,a]. LetV,, = 9, and let all geometric invariants and
the smearing functiorf be symmetric under” — —x™. We suppose that and a sufficient
number of its derivatives vanishgt = 4a. Thena, (f, D) = a,(f, Do, B™)+a,(f, Do, BY)
where the heat kernel coefficients on the rhs are calculated en[0, «], andS = %V.

Proof. Since reflection of the:th coordinate commutes with one can subdivide the spectral
resolution in the two setgA?, ¢ ), with normalized eigenfunctionsy (—x™) = £¢¥ (x™).
Then the heat kernel becomes

K(f;t)=K_(fit)+K:(f;1) (44)

where

Ki(f;1) = / dx f(x) ) eXp—ths)pa(x)?
M N

- / Ao / do (", 2) Y eXp(—1hs) (V2p (" )2 (45)
0 D) N

Now we observe that/2¢. are normalized eigenfunctions of the operafigron T x [0, a]
satisfying Dirichlet and Neumann boundary conditions

¢—|x”’:0 =0 (Vm + %V)¢+|x"’:0 =0. (46)

The assertion of lemma 4 follows immediately. |
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Under the conditions of lemma 4,,,, pmm @nd f.,, vanish identically. We can only
calculate the coefficients oft V2, V.., V, f V., V., and £, V2.

1 1 5 1
Corollary. €52 = 28, C57 = 354, (58 = 7193 €5,10 = §4-

The rest of the universal constants can be calculated by using the conformal properties of
the heat kernel which are exactly the same as for the usual boundary value problem [20].

Lemma 5. If D(e) = e2/“D, thend |_oa, (1, D) = (m — n)a,(f. D).

Under the conformal transformation the metgcacquires a multiplier <. V is
transformed to /€ V. Basic geometric quantities transform as [20]

d
(6

d
(6

k
F> =8ufj +8jfii — 8ij fu

e=0 ij

L) = _(Sabf;m - fLab
e=0 ab

d 1
—| (E)=-2fE+(m—2)fu (47)
de | _ 2
d
—_— (T) = —ZfT + 2(1 — m)ﬁi,-
de | _
d
d_ (pmm) = _zfpmm - f;aa + (1 - m)f:mm
€ |c=0
wherel is the Christoffel connection. We need the following conformal relations:
d 2 _ 2 _ 2 _ 2
e Vet = —4f Vo + 20 = m)[frum V" +2f (ViaaV + ViaVia) = Liga fin V7]
€ le=0
d
d_ Vzpmm = _4V2pmmf - 2f(V:aaV + V:a V:a) + Laa Vf,m + (1 - m)vzf;mm
€ |c=0
d
—| VPE=—4VEEf+(m =2 f(ViV *+ ViVd)
de | _
_%(m - 2)Laaf;mV2 + %(Wl - 2)f;mm VZ
d 48
% 0V2L§a = —4V2LZ f — 2(m — DV?Lag fim )
i VzLabLub = _4V2LabLabf - 2V2Luaf;m
de e=0
d
o0 ViaaV = _4V:aan - (m - 3)(Viaavf + ViaV:af)
de | _,
d
o0 ViV = _4V:aV:af + Z(VZaan + V:aV:af)'
de | _

To obtain relation (48) we used integration by parts. et 5. By collecting the terms with
Vo Vf andV2L.,, f.,, we obtain

0=4(1—-m)cs2— 253+ (m — 2)c54 — (m — 3)c57+ 2058

0=-2(1-m)csp+c53— %(m —2)cs 4 — 2(m — Dess — 2c56 — (m — S)cs 9.
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Solving these equation one obtaifg = L andcsg = Below, for the convenience

5
) - 192 T 384"
of the reader, we list all the universal constants of lemma 2:

1 1 1 1 1
€31 = :_Ef €41 =3 ) (51 = 54 ) (52 = 73 . €53 = 1o ;
(54 =3 (55 = — 555 C56 = 128 C57 = 74 €58 = 192 (49)
5 1
€59 = —3g1 €510 = @3-

5. Conclusions

In this paper we have studied the heat kernel expansion for a Laplace-type operator in
the presence of semitransparent boundaries. We have determined the general form of the
asymptotic expansion. Namely, we proved the validity of the asymptotic series (11). We have
explicitly calculated several of the first terms of the expansion for the most general operator
of Laplace type and arbitrary boundary potential. We believe that this is the most complete
study performed in this field so far.

Our methods of deriving the heat kernel coefficients admit extensive cross-checking.
Most of the universal constants can be calculated by at least two independent methods. |If
needed, one can calculate the higher coefficients as well. As possible generalizations, we can
suggest the’ potentials or even general four-parameter family on matching conditions [1]
on the hypersurface&. Another possible development of the present results could be
the renormalization of quantum field theory in the presence of singular interactions [21].
We believe that semitransparent boundaries provide a more adequate framework for the
renormalization than the ‘abrupt’ boundary conditions of Dirichlet or Neumann type. For
most recent work on renormalization with singular potentials, see [17].
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Appendix A

Some of the first non-zero coefficienss, ;, appearing in (31) read:

o —a? a o —3u
X11= 5 Xo2= e X33 = 1_6+Zl X35 = e
X37=g 44___‘)[2_“_4 X46=£2 X48=—5oz2
’ 16 32 64 ' 16 ’ 32
27 o® b —145% 3B
Xsg=—+—+— X57 = - ==
’ 256 64 160 ' 64 32
108%  5u3 —693% 1155
¥oo= T Tes MonT e #3756 -

The zeta functions defined in equation (33) are
$(2,n) = 20r(2s +n)
¢@B,n)=2n2s+n—13)
{(4,n)={r@2s+n—2)
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2
¢(B.m) = 5 (Gu@s +n =3 5y —leu@s+n -1 1))
2
¢(6,n) = E(CR(ZS +n—4)—r@2s+n —2))

2
¢(T.m) = 5 (Gu(2s +n =5 3) = 36u(2s +n =3 ) + felu(@s +n — 1 3))

where¢g andgy are the Riemann and Hurwitz zeta functions, correspondingly.

Appendix B

In this appendix we give expressions for the heat kernel coefficients for the Dirichlet and
Neumann boundary value problems. étbe a smooth compact Riemannian manifold with
smooth boundary M. Let S be an endomorphism a5, and letp.,, be a covariant derivative

of ¢ with respect to inward unit normal. We define the modified Neumann boundary operator
B* and the Dirichlet boundary operat8r by

B¢ = (¢ + SP)lam B~¢ = dlou- (50)

We setS = 0 for the Dirichlet boundary conditions to ensure uniform notation.

We only need the case of a totally geodesic boundary (= 0). We drop certain
boundary invariants which vanish under the conditions of lemma 4. One of the first heat kernel
coefficients are [14, 20, 22]

ao(f. D, B*) = (4x) "> Tr(f)[M]

ai(f, D, B*) = £3(4m)" " V2 Tr(f)[aM]

az(f, D, B*) = (4n) " 2L Tr{(6FE + Fr)[M] + 12 f S[A M]}

az(f, D, B¥) = 2. (4m)" "D/ Tr{ f(96E + 161 + 1925%) + 24F, ., ,[a M]

as(f, D, B¥) = (4r) "2 25 Tr(f (60E 44 + 60r E + 180E% + 30Q2 + 12,44

+512 — 2p% + 2R?)[M] + (f(720SE + 120St + 4808° (51)
+120S.44) + 120f.,, S)[0 M])

as(f, D, B¥) = t o (4) "D/ Tr{ £ (360E .y + 144QE.,, S + 720E>

+2880E S? + 14405* + 240F.,, + 240c E + 12002, 2
+20r2 — 8p? + 8R? + 480r §? + 9608, S + 6005, S-,)
+ foum (360E + 36052 + 607) + 45, ummm [OM].

On a manifold without a boundary one should keep volume contributions only.
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