
Heat kernel expansion for semitransparent boundaries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 8247

(http://iopscience.iop.org/0305-4470/32/47/304)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/47
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 8247–8259. Printed in the UK PII: S0305-4470(99)06039-4

Heat kernel expansion for semitransparent boundaries

M Bordag and D V Vassilevic†
Institute for Theoretical Physics, University of Leipzig, Augustusplatz 10/11, 04109 Leipzig,
Germany

E-mail: Michael.Bordag@itp.uni-leipzig.de and
Dmitri.Vassilevich@itp.uni-leipzig.de

Received 15 July 1999

Abstract. We study the heat kernel for an operator of Laplace type with aδ-function potential
concentrated on a closed surface. We derive the general form of the smallt asymptotics and
explicitly calculate several first heat kernel coefficients.

1. Introduction

Singular potentials are a frequently used idealization of physical situations allowing for an
easier (and, sometimes, explicit) solution while keeping the essential features of the problem.
The best studied cases of singular potentials are theδ function potentials concentrated at
isolated points, which describe the contact interactions of particles (for a review, see [1]).
Rigorous analysis of such potentials was initiated by Berezin and Faddeev [2] and has since
developed in a mature mathematical discipline [1]. Additional cases of singular potentials also
include cosmic strings and other topological defects [3], and problems related to black hole
entropy [4]. We also wish to mention a recent work on the boundary discontinuities [5].

With respect to the Casimir effect, aδ function shaped potential provides the simplest
generalization of the conductor boundary conditions moving towards the inclusion of more
realistic properties of the walls, such as partial transparency. For a scalar and a spinor field with
plane boundaries this problem has been investigated in [6], and for moving partly transmitting
mirrors in [7]. An interesting approach using ‘semihard’ and ‘weak’ boundaries is developed
in [8]. In all these cases it is crucial to know the ultraviolet divergences in order to find
the structure of the necessary counterterms. This is equivalent to the investigation of the
corresponding heat kernel asymptotics. As is known [9], this is an expansion with respect to
integer powers of the proper time parametert (see below) for Laplace-type operators on closed
manifolds and to half-integer powers, i.e. to powers of

√
t , on manifolds with boundaries and

Dirichlet or Robin boundary conditions. For more complicated pseudo-differential operators
powers of lnt may appear.

This paper is devoted to singularities which are located on closed hypersurfaces of
dimensionm − 1, wherem is the dimension of the underlying manifold. Apart from the
quantum mechanical problem of a particle in space with semitransparent boundaries (for a
recent calculation of the vacuum energy for such a system see, for example, [10]) possible
physical applications also include fermions on the background of a magnetic tube [11] and
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photons interacting with dielectric bodies [12,13]. In all these cases the dynamics is described
by a second-order differential operator of Laplace type, supplemented by certain matching
conditions on a surface. Our primary interest is in the heat kernel asymptotics. They govern
the short-time asymptotics of quantum mechanical propagators, the ultraviolet divergences
and the large-mass expansion in quantum field theory.

The heat kernel coefficients for singular potentials cannot be obtained, in general, as
limiting cases of smooth configurations. This is already clear from the fact that the heat kernel
expansion for a smooth potential contains powers of the potential taken at the same point. Such
expressions become ill-defined in theδ function limit. In the paper by Kirsten and the present
authors [13], the suprising property was observed that sometimes the ultraviolet behaviour of
a system withδ-function potential is less singular than that of corresponding ‘smooth’ system.

Let us proceed with basic definitions. LetM be a smooth Riemannian manifold of
dimensionm. Let6 be a smooth closed submanifold of co-dimension 1. LetV be a vector
bundle overM. Let E andV be endomorphisms ofV andV|6 , respectively. In a more
‘physical’ language,E andV are matrix valued functions bearing spin and internal indices.
In this paper we study the heat kernel expansion for the operator

D = −(∇2 +E(x) + δ6V (x)) = D0 − δ6V (x). (1)

Let dx and dy be the Riemannian volume elements onM and6. We normalize theδ6 function
in such a way that for any smooth functionf∫

M

δ6f (x) dx =
∫
6

f (y)dy. (2)

We adopt the following short-hand notation for the integrals:∫
M

dxF(x) = {F }[M]
∫
6

dy F(y) = {F }[6]. (3)

We can choose the coordinates in such a way that in the vicinity of6 the metric has the
form

gijdx
i dxj = (dxm)2 + gab dxa dxb. (4)

The second fundamental form of6 is Lab = 1
2∂mgab. We suppose thatxm = 0 on6. Our

notation is the same as in [14].Rijkl are the components of the Riemann curvature tensor.
With our sign conventions,R1212 is negative on the standard sphere in Euclidean space. The
Ricci tensorρ and the scalar curvatureτ are given by

ρij := Rikkj τ = ρii = Rikki . (5)

Let ρ2 := ρijρij andR2 := RijklRijkl be the norm of the Ricci and full curvature tensors.
Let�ij be the endomorphism-valued components of the curvature of the connection onV. In
physical language,�ij is the field strength for the Yang–Mills and spin connections. Let ‘;’
denote multiple covariant differentiation with respect to the Levi-Civita connection ofM, and
let ‘:’ denote multiple tangential covariant differentiation on6 with respect to the Levi-Civita
connection of6; the difference between these two is measured by the second fundamental
form. For example,f;jj = f;mm + f;aa = f;mm + f:aa − Laaf;m.

A mathematically rigorous way to define the spectral problem for the operatorD is to
replace it by the spectral problem forD0 for x 6∈ 6 supplemented by the conditions on6 (see,
for example, [1]):

φ(−0) = φ(+0) (6)

∇mφ(−0)−∇mφ(+0) = V φ(0) (7)

with the short-hand notationφ(±0) = limxm→±0 φ(x).
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The heat kernelK(x, y; t) is a solution of the heat equation

(∂t +D0)K(x, y; t) = 0 (8)

with the initial condition

K(x, y; 0) = δ(x, y) (9)

which satisfies the matching conditions on6 following from (6) and (7).
We are interested in the integrated heat kernel

K(f,D; t) = {f (x)K(x, x; t)}[M] = Tr(f exp(−tD)). (10)

On manifolds with local boundary conditions there is an asymptotic expansion ast → +0

K(f,D; t) =
∑
n>0

an(f,D)t
(n−m)/2 (11)

where the coefficientsan(f,D) are volume and surface integrals of local invariants. The
existence of the asymptotic expansion (11) is usually considered as granted. There are,
however, important exceptions (besides ‘genuine’ pseudo-differential operators, the square
root of the Laplacian, for instance), such as the boundary value problem for spectral boundary
conditions, andδ-function potentials with point-like support on manifolds with dimension
m > 2. In such cases lnt terms can appear in the asymptotic expansion [15–17]. To the best
of our knowledge, the existence of expansion (11) for the problem considered here has never
been stated before.

This paper is organized as follows. In the next section we derive an integral equation
for the heat kernel and show the validity of the asymptotic expansion (11). In section 3 we
calculate the heat kernel asymptotics for the particular case when6 is a sphere inRm. In
section 4 we derive explicit expressions for the heat kernel coefficientsan(f,D), n 6 5, for
the most general form of the operatorD. To this end, we use the particular case calculations
of section 3 and functorial properties of the heat kernel.

2. General structure of the heat kernel

To study the general structure of the heat kernel expansion we use an integral equation similar
to that proposed by Gaveau and Schulman [18] for the one-dimensionalδ-potential:

K(x, y; t) = K0(x, y; t) +
∫ t

0
ds
∫
6

dzK0(x, z; t − s)V (z)K(z, y; s) (12)

whereK0(x, y; t) denotes the heat kernel corresponding to the operatorD0 with V = 0.
Equation (12) has a solution in the form of the power series inV :

K(x, y; t) = K0(x, y; t) +
∞∑
n=1

∫ t

0
dsn

∫ sn

0
dsn−1 . . .

∫ s2

0
ds1

∫
6

dzn . . .
∫
6

dz1

×K0(x, zn; t − sn)V (zn)K0(zn, zn−1; sn − sn−1) . . . V (z1)K0(z1, y; s1). (13)

Equation (12) can be obtained formally as a limiting case of the smooth potential. Instead of
investigating this limiting procedure we prefer to directly check that the heat kernel defined
by (12) satisfies the heat equation (8) with the initial condition (9) and boundary conditions
which follow from (6) and (7). The initial condition (9) is evident from the equation (13).
Only the first term contributes att = 0 if x, y 6∈ 6. The heat equation (8) can be checked by
a direct calculation. The first of the matching conditions (6) merely expresses the fact that the
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heat kernelK0(x, y; t) is smooth enough. The second condition (7) is a bit less trivial. Let
y 6∈ 6. Then the following sequence of transformations holds:

∇xmK(−0, y; t)−∇xmK(+0, y; t)
= − lim

ε→0

∫ ε

−ε
dxm ∇2

m

∫ t

0
ds
∫
6

dzK0(x, z; t − s)V (z)K(z, y; s)

= lim
ε→0

∫ ε

−ε
dxm Dx

0

∫ t

0
ds
∫
6

dzK0(x, z; t − s)V (z)K(z, y; s)

= lim
ε→0

∫ ε

−ε
dxm

∫ t

0
ds
∫
6

dz (∂sK0(x, z; t − s))V (z)K(z, y; s)

= lim
ε→0

∫ ε

−ε
dxm

∫ t

0
ds
∫
6

dzK0(x, z; t − s)V (z)Dy

0K(z, y; s)

+ lim
ε→0

∫ ε

−ε
dxm

∫
6

dz [δ(x, z)V (x)K(z, y; t)−K0(x, z; t)V (z)δ(z, y)]
= V (xa, 0)K((xa, 0), y; t).

The main advantage of representation (13) is that the small-t behaviour ofK(x, y; t)
is defined through the small-t behaviour ofK0(x, y; t) which is known in some detail. To
simplify notation we do not explicitly write down the volume elements here, or the parallel
transport matrices later on. We also drop all matrix indices.

We are interested in the integrated heat kernelK(t) = ∫ dx K(x, x; t), where we put the
smearing functionf = 1 for simplicity. The integration overx can be performed by using the
equation ∫

M

dx K0(x, y1; τ1)K0(y2, x; τ2) = K0(y1, y2; τ1 + τ2) (14)

which follows from the evident operator identity e−τ1D0e−τ2D0 = e−(τ1+τ2)D0. We have

K(t) = K0(t) +
∞∑
n=1

∫ t

0
dsn

∫ sn

0
dsn−1 . . .

∫ s2

0
ds1

∫
6

dzn . . .
∫
6

dz1

×K0(z1, zn; t + s1− sn)V (zn)K0(zn, zn−1; sn − sn−1) . . . V (z1). (15)

It is instructive to explicitly calculate several of the first terms of expansion (15). In the
linear order inV , one immediately gets

K1(t) = t
∫
6

dzK0(z, z; t)V (z). (16)

This equation means that the liner order inV can be obtained from the asymptotic expansion
for the heat kernel in which a smooth potential is replaced by the singular one. Such a simple
relation does not hold at higher orders inV .

In analysing the order-V 2 contributions we suppose thatD0 is just the standard scalar
Laplacian inRm, neglect derivatives ofV and suppose that6 is flat. However, we turn to
a slightly more general case and allow6 to be of dimensionm − k. In this particular case
K0(x, y; t) = (4πt)−m/2 exp(−(x − y)2/4t) and

K2(t) = (4π)− m+k
2 t

m−k
2

∫
6

dz V (z)2
∫ t

0
ds2

∫ s2

0
ds1 ((t − s2 + s1)(s2 + s1))

− k
2 . (17)

For k > 1 the integrals overs are divergent. This shows that the proposed method cannot
be extended, particularly forδ(r) potentials inRm with m > 2, for which expansion (11) is
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known to break down [16,17]. We now return to the subject of our study,k = 1. All integrals
are easily calculated giving

K2(t) = t

(4πt)(m−1)/2

1

8

∫
6

dz V (z)2 + · · · (18)

where we have omitted all higher-order terms.
To calculate the other terms in expansion (15) one can use the following strategy. Let us

substitute the small-s asymptotic expansion for theK0(x, y; s)

K0(x, y; s) ∼ exp(−σ(x, y)/2s)
(4πs)m/a

(A
(0)
0 (x, y) + sA(0)2 (x, y) + · · ·) (19)

whereσ(x, y) is the half square of the geodesic distance betweenx andy; A(0)2i (x, y) are the
heat kernel coefficients for the operatorD0. Contributions to (15) of largely separated points
are exponentially damped. Therefore, we may expandA

(0)
2i (zj , zj−1) andσ(zj , zj−1) in Taylor

series in(zj − zj−1). The potentialsV (zj ) are to be expanded around a certain point, sayz1.
Finally, the expression given under the integrals in (15) will become a sum of the monomials

exp

(
− (z1− zn)2

4(t − s1 + sn)
− · · · − (z2 − z1)

2

4(s2 − s1)
)
I (N)(V , . . . ; z1)

(z1− zn)N1

(t − s1 + sn)M1
. . .

(z2 − z1)
Nn

(s2 − s1)Mn

(20)

whereI (N) is a local invariant functional ofV , geometric invariants and their derivatives
calculated at the pointz1. Negative powers of(sj − sj−1) appear due to the expansion of the
σ(zj − zj−1) in the exponentials. It is easy to see thatMj 6 Nj/2.

Integrals overzi , except for the last one overz1, can be calculated with the help of the
relation∫
Rn

dx exp

(
− (y1− x)2

4α
− (x − y2)

2

4β

)
=
(

4παβ

α + β

)n
2

exp

(
− (y1− y2)

2

4(α + β)

)
(21)

with positive real parametersα andβ. Note that equation (21) is just a particular case of
(14) whenD0 is the flat space Laplacian. Integrals of even powers of(x − y1) with the same
exponential weight are obtained by differentiation of (21) with respect toα. Odd powers ofx
can be integrated by using the following obvious relation:∫

Rn
dx

(
xa − βy

a
1 + αya2
α + β

)
exp

(
− (y1− x)2

4α
− (x − y2)

2

4β

)
= 0. (22)

Before integrating oversj let us introduce rescaled variabless̃j = sj /t . This enables us
to extract an overall power of the proper timet . Integrals over̃sj will only give numerical
factors. One can easily see that the strongest possible singularity of the integrand has the form
((1− s̃n + s̃1) . . . (s̃2− s̃1))− 1

2 . This singularity is integrable. Hence the integral overs̃j always
exists. After all the integrations have been performed one obtains

∫
6

dz1 I
(N)(V , . . . ; z1)

multiplied by a numerical coefficient and a power of
√
t .

Generalization of the procedure proposed in this section for the case of the non-unit
smearing functionf is obvious. Therefore, we have demonstrated that for the spectral problem
considered in this paper the asymptotic expansion (11) is valid where the coefficientsan(f,D)

are integrals overM and6 of local invariants. Volume terms are the same as in the heat kernel
expansion for the operatorD0.
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3. Penetrable spherical shell

Before calculating the heat kernel expansion for the generic form of the operatorD, consider
a particular case of the constant potentialV with the support on a spherical shell of the radius
R:

V (x)δ6 = − α
R
δ(r − R). (23)

Herer is the radial coordinate. LetD0 in (1) be the standard scalar Laplacian inRm. After
separating the angular variables the eigenvalue equation takes the form(

− ∂
2

∂r2
− (m− 1)

r

∂

∂r
+
l(l +m− 2)

r2

)
φ = k2φ (24)

wherel = 0, 1, 2, . . . is the orbital momentum. After the substitutionφ(r) = r(2−m)/2ψ(r)
the equation takes the form(

− ∂
2

∂r2
− 1

r

∂

∂r
+
ν2

r2

)
ψ = k2ψ (25)

where the notationν = l + m−2
2 is introduced.

The basic ideas of the formalism used in this section are contained in [19]. The zeta
function associated with this operator can be written in the form

ζ(s) =
∫ ∞

0

dt

t

t s

0(s)
K(t) (26)

whereK(t) is the integrated heat kernel. The function0(s)ζ(s) has simple poles ins = d
2−N

(N = 0, 1
2, 2, . . .) whose residua are determined by expansion (11) of the heat kernel fort → 0.

It can be easily seen that the coefficients are related to the residua by means of

an = Ress= m−n
2
0(s)ζ(s). (27)

These heat kernel coefficients can be obtained by calculating the zeta function starting from
the differential equation (25). The zeta function of the operatorD can be expressed in the form

ζ(s) = sinπs

π

∞∑
l=0

Dl

∫ ∞
0

dkk−2s ∂

∂k
ln fl(ik) (28)

wherefl(k) is the Jost function of the scattering problem corresponding to the operatorD and

Dl = (2l +m− 2) (l +m− 3)!

l! (m− 2)!
m > 3 (29)

is the multiplicity of the orbital eigenvalues. This representation, as it stands, is valid for
Res > m

2 . The Jost function reads [13]

fl(ik) = 1 +αIν(k)Kν(k). (30)

In equation (28) the contribution resulting from the empty space (it is independent fromα) is
dropped. Due to this reason there is no contribution corresponding to the coefficienta0 there.

In fact, we need the residua of the function0(s)ζ(s). These are delivered when inserting
the uniform asymptotic expansion fork → ∞ and l → ∞ of the Jost function into
equation (28). The latter can be obtained simply by inserting the known expansions of the
Bessel functions into (30). This expansion can be written in the form

ln fl(ik) =
∑
n,i

Xn,i t
iν−n. (31)
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Here,n = 1, . . . , Nm, andNm is the number of the highest heat kernel coefficient requiring
calculation. The coefficientsXn.i are numbers, some of the first appearing in (31) are given
in the appendix. The notationt =

√
1 + (k/ν)2 is used. When inserting (31) into the rhs

of equation (28), the change of variablesk → νk can be made after which the expression
factorizes. The integral can be calculated easily. It reads∫ ∞

0
dkk−2s ∂

∂k
t i = −0(1− s)0(s + i/2)

0(i/2)
. (32)

The sum overl takes the form

ζ(d, n) =
∞∑
l=0

Dlν
−2s−n. (33)

The functionsζ(d, n) can be expressed in terms of Riemann and Hurwitz zeta functions. They
are shown in the appendix.

Now the heat kernel coefficients can be expressed in the form

aN = −Ress= d−N
2

Nm∑
n=1

ζ(d, n)
∑
i

Xn,i
0(s + i/2)

0(i/2)
(N = 1, 3

2, 2,
5
2, . . . , Nm). (34)

The sum overi runs fromi = n to i = n + 4([ n+1
2 ] − 1) where [. . .] denotes the integer part.

In this form they can be calculated immediately using one of the standard computer systems
for analytical calculations. As a result, we obtain thata1 = 0 in any dimension. Form = 3
other coefficients read:

a2 = −α
2
√
π

a3 = α2

8

a4 = −α
3

12
√
π

a5 = α4

64

a3 = −(α
3(4 + 21α2))

2520
√
π

a7 = α4(1 + 2α2)

1536

(35)

for m = 4:

a2 = −α
8

a3 = α2√π
32

a4 = −α
3

48
a5 = −(α

2(3− 4α2)
√
π)

1024

a6 = −(α
3(−8 + 7α2))

3360
a7 = −(α

2(135 + 168α2 − 128α4)
√
π)

3932 16

(36)

for m = 5:

a2 = −α
12
√
π

a3 = α2

48

a4 = −α
3

72
√
π

a5 = α2(−2 +α2)

384

a6 = −(α
3(−24 + 7α2))

5040
√
π

a7 = −9α4 + 2α6

9216

(37)

for m = 6:

a2 = −α
64

a3 = α2√π
256

a4 = − α
3

384
a5 = −α

2(15− 4α2)
√
π

8192

a6 = −(α
3(−20 + 3α2))

11 520
a7 = α2(945− 1160α2 + 128α4)

√
π

3145 728

(38)
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and form = 7:

a2 = −α
120
√
π

a3 = α2

480

a4 = −α3

720
√
π

a5 = α2(−6 +α2)

3840

a6 = −(α
3(−76 + 7α2))

50 400
√
π

a7 = α2(27− 15α2 + α4)

46 080
.

(39)

4. Calculation of the heat kernel asymptotics

The information on the general structure of the heat kernel asymptotic obtained in section 2
can be summarized in the following lemma.

Lemma 1.

(1) LetNν(f ) = f;m...m be theνth normal covariant derivative. There exist invariant local
formulaean,ν(y,D) so that

an(f,D) = {an(f,D0; x)}[M] +

{ ∑
06ν6n−1

Nν(f )an,ν(y,D)

}
[6]. (40)

(2) If we expandan,ν with respect to a Weyl basis, the coefficients only depend on the dimension
m through a normalizing constant.

(3) Consider a transformation which changes the sign before themth components of all
vector and tensor fields and reverses the sign of the extrinsic curvatureLab. Under this
transformationan,ν → (−1)νan,ν .

(4) In the linear order ofV

an(f,D) = {V (z) δ

δE(z)
an(f,D0)}[6]. (41)

Proof. Assertion (1) is now evident. Volume terms{an(f,D0; x)}[M] are given in the
appendix B. One can also observe that coefficients before monomials constructed from the
geometric invariants depend on the dimensionm only through the factor(4π)−m/2. A more
simple way to prove assertion (2) is to consider the product spacesM = S1 × M1 and
6 = S1×61, exactly repeating the corresponding proof for manifolds with boundaries [20].
Assertion (3) follows from the fact that we can repeat all the calculations in section 2 with
the replacementxm → −xm. The last assertion of lemma 1 is just a trivial generalization
of equation (16) for non-unit smearing functionf . Indeed, it is sufficient to represent the
variation on the rhs of (41) as

δ

δE(z)
K0(t) =

∫
M

dx
∫ t

0
ds f (x)K0(z, x; t − s)K0(x, z; s). (42)

Assertion (4) is now evident.
Now we can determine several first heat kernel coefficients up to a few, as yet undetermined,

constants. �
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Lemma 2. There exist universal constantsc3,1, . . . , c5,10, such that

a0(f,D) = a0(f,D0)

a1(f,D) = 0
a2(f,D) = a2(f,D0) + (4π)−m/2{fV }[6]
a3(f,D) = (4π)−(m−1)/2{c3,1fV

2}[6]
a4(f,D) = a4(f,D0) + (4π)−m/2{c4,1fV

3 + 1
6f τV + fEV

+1
6fV:aa − 1

6f;mVLaa + 1
6f;mmV }[6]

a5(f,D) = (4π)−(m−1)/2{c5,1fV
4 + c5,2f τV

2 + c5,3ρmmV
2

+c5,4fV
2E + c5,5fV

2LaaLbb + c5,6fV
2LabLab + c5,7fV:aaV

+c5,8fV:aV:a + c5,9f;mV 2Laa + c5,10f;mmV 2}[6].

(43)

Proof. According to lemma 1 (1) and (2), any coefficientan contains all local invariants of
appropriate dimension. Some of the invariants, such as, e.g.,fVLaa, f;mV etc, are ruled out
by lemma 1 (3). All terms linear inV are determined by lemma 1 (4). �

Lemma 3. c3,1 = 1
8, c4,1 = 1

6, c5,1 = 1
64, c5,4 = 1

8, c5,5 = − 1
256, c5,6 = 1

128.

Proof. The coefficientsc3,1, c4,1, c5,1, c5,5 andc5,6 are easily calculated using the example
of the δ potential on the sphere of the previous section. To calculate the coefficientc5,4,
consider the case whenE = e1 is a constant proportional to the unit matrix. In this case
K(f ; t) = K(f ; t)|E=0 exp(te). This immediately givesc5,4 = c3,1 = 1

8. �

Several more universal constants can be calculated by a reduction to Dirichlet and
Neumann boundary value problems. All necessary definitions and explicit expressions for
the heat kernel coefficient for that problem can be found in appendix B.

Lemma 4. (1) LetM = 6 × [−a, a]. Let∇m = ∂m and let all geometric invariants and
the smearing functionf be symmetric underxm→−xm. We suppose thatf and a sufficient
number of its derivatives vanish atxm = ±a. Thenan(f,D) = an(f,D0,B−)+an(f,D0,B+)

where the heat kernel coefficients on the rhs are calculated on6 × [0, a], andS = 1
2V .

Proof. Since reflection of themth coordinate commutes withD one can subdivide the spectral
resolution in the two sets,(λN± , φ

N
± ), with normalized eigenfunctionsφN± (−xm) = ±φN± (xm).

Then the heat kernel becomes

K(f ; t) = K−(f ; t) +K+(f ; t) (44)

where

K±(f ; t) =
∫
M

dx f (x)
∑
N

exp(−tλ±)φ±(x)2

=
∫ a

0
dxm

∫
6

dz f (xm, z)
∑
N

exp(−tλ±)(
√

2φ±(xm, z))2. (45)

Now we observe that
√

2φ± are normalized eigenfunctions of the operatorD0 on6 × [0, a]
satisfying Dirichlet and Neumann boundary conditions

φ−|xm=0 = 0 (∇m + 1
2V )φ+|xm=0 = 0. (46)

The assertion of lemma 4 follows immediately. �
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Under the conditions of lemma 4,Lab, ρmm andf;m vanish identically. We can only
calculate the coefficients off τV 2, fV:aaV , fV:aV:a andf;mmV 2.

Corollary. c5,2 = 1
48, c5,7 = 1

24, c5,8 = 5
192, c5,10 = 1

64.

The rest of the universal constants can be calculated by using the conformal properties of
the heat kernel which are exactly the same as for the usual boundary value problem [20].

Lemma 5. If D(ε) = e−2f εD, then d
dε |ε=0an(1,D) = (m− n)an(f,D).

Under the conformal transformation the metricg acquires a multiplier e2f ε . V is
transformed to e−f εV . Basic geometric quantities transform as [20](

d

dε

∣∣∣∣
ε=0

0

)k
ij

= δikf;j + δjkf;i − δijf;k(
d

dε

∣∣∣∣
ε=0

L

)
ab

= −δabf;m − fLab
d

dε

∣∣∣∣
ε=0

(E) = −2fE +
1

2
(m− 2)f;ii

d

dε

∣∣∣∣
ε=0

(τ ) = −2f τ + 2(1−m)f;ii
d

dε

∣∣∣∣
ε=0

(ρmm) = −2fρmm − f;aa + (1−m)f;mm

(47)

where0 is the Christoffel connection. We need the following conformal relations:

d

dε

∣∣∣∣
ε=0

V 2τ = −4fV 2τ + 2(1−m)[f;mmV 2 + 2f (V:aaV + V:aV:a)− L:aaf;mV 2]

d

dε

∣∣∣∣
ε=0

V 2ρmm = −4V 2ρmmf − 2f (V:aaV + V:aV:a) +LaaVf;m + (1−m)V 2f;mm

d

dε

∣∣∣∣
ε=0

V 2E = −4V 2Ef + (m− 2)f (V:aaV + V:aV:a)

− 1
2(m− 2)Laaf;mV 2 + 1

2(m− 2)f;mmV 2

d

dε

∣∣∣∣
ε=0

V 2L2
aa = −4V 2L2

aaf − 2(m− 1)V 2Laaf;m

d

dε

∣∣∣∣
ε=0

V 2LabLab = −4V 2LabLabf − 2V 2Laaf;m

d

dε

∣∣∣∣
ε=0

V:aaV = −4V:aaVf − (m− 3)(V:aaVf + V:aV:af )

d

dε

∣∣∣∣
ε=0

V:aV:a = −4V:aV:af + 2(V:aaVf + V:aV:af ).

(48)

To obtain relation (48) we used integration by parts. Letn = 5. By collecting the terms with
V:aaVf andV 2L:aaf;m we obtain

0= 4(1−m)c5,2 − 2c5,3 + (m− 2)c5,4 − (m− 3)c5,7 + 2c5,8

0= −2(1−m)c5,2 + c5,3− 1
2(m− 2)c5,4 − 2(m− 1)c5,5− 2c5,6− (m− 5)c5,9.
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Solving these equation one obtainsc5,3 = 1
192 andc5,9 = − 5

384. Below, for the convenience
of the reader, we list all the universal constants of lemma 2:

c3,1 = 1
8 c4,1 = 1

6 c5,1 = 1
64 c5,2 = 1

48 c5,3 = 1
192

c5,4 = 1
8 c5,5 = − 1

256 c5,6 = 1
128 c5,7 = 1

24 c5,8 = 5
192

c5,9 = − 5
384 c5,10 = 1

64.

(49)

5. Conclusions

In this paper we have studied the heat kernel expansion for a Laplace-type operator in
the presence of semitransparent boundaries. We have determined the general form of the
asymptotic expansion. Namely, we proved the validity of the asymptotic series (11). We have
explicitly calculated several of the first terms of the expansion for the most general operator
of Laplace type and arbitrary boundary potential. We believe that this is the most complete
study performed in this field so far.

Our methods of deriving the heat kernel coefficients admit extensive cross-checking.
Most of the universal constants can be calculated by at least two independent methods. If
needed, one can calculate the higher coefficients as well. As possible generalizations, we can
suggest theδ′ potentials or even general four-parameter family on matching conditions [1]
on the hypersurface6. Another possible development of the present results could be
the renormalization of quantum field theory in the presence of singular interactions [21].
We believe that semitransparent boundaries provide a more adequate framework for the
renormalization than the ‘abrupt’ boundary conditions of Dirichlet or Neumann type. For
most recent work on renormalization with singular potentials, see [17].
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Appendix A

Some of the first non-zero coefficients,Xn,i , appearing in (31) read:

X1,1 = α

2
X2,2 = −α

2

8
X3,3 = α

16
+
α3

24
X3,5 = −3α

8

X3,7 = 5α

16
X4,4 = −α

2

32
− α

4

64
X4,6 = 3α2

16
X4,8 = −5α2

32

X5,5 = 27α

256
+
α3

64
+
α5

160
X5,7 = −145α

64
− 3α3

32

X5,9 = 1085α

128
+

5α3

64
X5,11 = −693α

64
X5,13 = 1155α

256
.

The zeta functions defined in equation (33) are

ζ(2, n) = 2ζR(2s + n)

ζ(3, n) = 2ζH(2s + n− 1; 1
2)

ζ(4, n) = ζR(2s + n− 2)
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ζ(5, n) = 2

3!
(ζH(2s + n− 3; 1

2)− 1
4ζH(2s + n− 1; 1

2))

ζ(6, n) = 2

4!
(ζR(2s + n− 4)− ζR(2s + n− 2))

ζ(7, n) = 2

5!
(ζH(2s + n− 5; 1

2)− 5
2ζH(2s + n− 3; 1

2) + 9
16ζH(2s + n− 1; 1

2))

whereζR andζH are the Riemann and Hurwitz zeta functions, correspondingly.

Appendix B

In this appendix we give expressions for the heat kernel coefficients for the Dirichlet and
Neumann boundary value problems. LetM be a smooth compact Riemannian manifold with
smooth boundary∂M. LetS be an endomorphism onV∂M and letφ;m be a covariant derivative
of φ with respect to inward unit normal. We define the modified Neumann boundary operator
B+ and the Dirichlet boundary operatorB− by

B+φ := (φ;m + Sφ)|∂M B−φ := φ|∂M. (50)

We setS = 0 for the Dirichlet boundary conditions to ensure uniform notation.
We only need the case of a totally geodesic boundary (Lab = 0). We drop certain

boundary invariants which vanish under the conditions of lemma 4. One of the first heat kernel
coefficients are [14,20,22]

a0(f,D,B±) = (4π)−m/2 Tr(f )[M]
a1(f,D,B±) = ± 1

4(4π)
−(m−1)/2 Tr(f )[∂M]

a2(f,D,B±) = (4π)−m/2 1
6 Tr{(6FE + Fτ)[M] + 12f S[∂M]}

a3(f,D,B±) = ± 1
384(4π)

−(m−1)/2 Tr{f (96E + 16τ + 192S2) + 24F;mm}[∂M]
a4(f,D,B±) = (4π)−m/2 1

360 Tr(f (60E;kk + 60τE + 180E2 + 30�2 + 12τ;kk
+5τ 2 − 2ρ2 + 2R2)[M] + (f (720SE + 120Sτ + 480S3

+120S:aa) + 120f;mmS)[∂M])
a5(f,D,B±) = ± 1

5760(4π)
−(m−1)/2 Tr{f (360E;mm + 1440E;mS + 720E2

+2880ES2 + 1440S4 + 240E:aa + 240τE + 120�ab�ab
+20τ 2 − 8ρ2 + 8R2 + 480τS2 + 960S:aaS + 600S:aS:a)

+f;mm(360E + 360S2 + 60τ) + 45f;mmmm}[∂M].

(51)

On a manifold without a boundary one should keep volume contributions only.
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[16] Albeverio S, Brzezniak Z and Dabrowski L 1994J. Phys. A: Math. Gen.274933
[17] Solodukhin S N 1999Nucl. Phys.B 539403
[18] Gaveau B and Schulman L S 1986J. Phys. A: Math. Gen.191833
[19] Bordag M, Kirsten K and Elizalde E 1996J. Math. Phys.37895
[20] Branson T P and Gilkey P B 1990Commun. Partial Diff. Eqns15245
[21] Symanzik K 1981Nucl. Phys.B 1901
[22] Kirsten K 1998Class. Quantum Grav.15L5


